Dr. Fabian Faßnacht
- Forschung, Lehre
- Gruppe: Vegetation
- Raum: Geb. 10.50, Raum 816
- fabian fassnacht ∂ fu-berlin de
New work address:
Freie Universität Berlin
Remote Sensing and Geoinformatics
Malteserstr. 74-100
12249 Berlin
Fabian Faßnacht
Remote sensing of vegetation ecosystems
Topics
- Tree species composition classification and mapping
- Estimation of aboveground forest biomass form multi-sensor remote sensing data
- Remote sensing based assessment of grassland dynamics on the Tibetan plateau
- Application of machine learning methods in the context of remote sensing data
- Forest disturbance identification with optical remote sensing data
Curriculum vitae
2017 | Chinese Academy of Sciences President’s Fellowship: Research stay at the CAS Northwest Institute of Plateau Biology, Xining, China |
2015 | Fulbright scholarship: Research stay at the Colorado State University, Fort Collins, USA |
2014 | Research assistant (Postdoc) at the IfGG at the KIT |
2012 | Research visit at the “Laboratorio de Geomática y Ecología del Paisaje”, Universidad de Chile, Chile. |
2010-2013 | PhD student at the Professorship for Remote Sensing and Landscape Information Systems, University of Freiburg. Title of the dissertation: “Assessing the potential of imaging spectroscopy data to map tree species composition and bark beetle-related tree mortality”. |
2009 | Diploma in forestry sciences, University of Freiburg |
2003 | Abitur in Weingarten |
Editorial tasks
Associate editor with Forestry (Oxford University Press) (since 2016)
Associate editor with the European Journal of Remote Sensing (Taylor & Francis) (2016-2017)
Teaching
GIS (Verfahrenskurs GIS), Cartography (Verfahrenskurs Kartographie), Environmental monitoring with remote sensing (Methoden der Umweltforschung 2), Scientific writing (Naturwissenschaftliche Arbeitsweisen), Berufspraktikum
Vor 2015: Masterprojekt Schwarzwald, Klimafolgenforschung 3, Geographische Exkursionen, Kartographie
Publications
2025
Ewald, M.; Conedera, M.; Stavros, E. N.; Fassnacht, F. E. (2025). Forest fires in cool-temperate and humid-continental forests—an overview. Forestry: An International Journal of Forest Research, 98 (1), 1–5. doi:10.1093/forestry/cpae063
Ewald, M.; Labenski, P.; Westphal, E.; Metzsch-Zilligen, E.; Großhauser, M.; Fassnacht, F. E. (2025). Leaf litter combustion properties of Central European tree species. Forestry: An International Journal of Forest Research, 98 (1), 29–39. doi:10.1093/forestry/cpad026
2024
Fassnacht, F. E.; Mager, C.; Waser, L. T.; Kanjir, U.; Schäfer, J.; Buhvald, A. P.; Shafeian, E.; Schiefer, F.; Stančič, L.; Immitzer, M.; Dalponte, M.; Stereńczak, K.; Skudnik, M. (2024). Forest practitioners’ requirements for remote sensing-based canopy height, wood-volume, tree species, and disturbance products. Forestry: An International Journal of Forest Research. doi:10.1093/forestry/cpae021
Herrmann, M.; Schmidt-Riese, E.; Bäte, D. A.; Kempfer, F.; Fassnacht, F. E.; Egger, G. (2024). Satellite-observed flood indicators are related to riparian vegetation communities. Ecological Indicators, 166, Artkl.Nr.: 112313. doi:10.1016/j.ecolind.2024.112313
Labenski, P.; Millin-Chalabi, G.; Pacheco-Pascagaza, A. M.; Senn, J. A.; Fassnacht, F. E.; Clay, G. D. (2024). An optical satellite-based analysis of phenology and post-fire vegetation recovery in UK upland moorlands. Environmental and Sustainability Indicators, 24, 100492. doi:10.1016/j.indic.2024.100492
Schäfer, J.; Winiwarter, L.; Weiser, H.; Höfle, B.; Schmidtlein, S.; Novotný, J.; Krok, G.; Stereńczak, K.; Hollaus, M.; Fassnacht, F. E. (2024). CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography. European Journal of Remote Sensing, 57 (1), 1–18. doi:10.1080/22797254.2024.2396932
Schäfer, J.; Winiwarter, L.; Weiser, H.; Novotný, J.; Höfle, B.; Schmidtlein, S.; Henniger, H.; Krok, G.; Stereńczak, K.; Fassnacht, F. E. (2024). Assessing the potential of synthetic and ex situ airborne laser scanning and ground plot data to train forest biomass models. (T. Y. Lam, Hrsg.) Forestry: An International Journal of Forest Research, 97 (4), 512–530. doi:10.1093/forestry/cpad061
Schiller, C.; Költzow, J.; Schwarz, S.; Schiefer, F.; Fassnacht, F. E. (2024). Forest disturbance detection in Central Europe using transformers and Sentinel-2 time series. Remote Sensing of Environment, 315, 114475. doi:10.1016/j.rse.2024.114475
Shafeian, E.; Ewald, M.; Latifi, H.; Fassnacht, F. E. (2024). Unveiling the main drivers of tree decline in Zagros semi-arid forests. (R. Manso, Hrsg.) Forestry: An International Journal of Forest Research. doi:10.1093/forestry/cpae048
2023
Gränzig, T.; Clasen, A.; Fassnacht, F. E.; Cord, A.; Förster, M. (2023). Combining remote sensing, habitat suitability models and cellular automata to model the spread of the invasive shrub Ulex europaeus. Biological Invasions, 25 (12), 3711–3736. doi:10.1007/s10530-023-03132-1
Herrmann, M.; Fassnacht, F.; Egger, G. (2023). Satellitenbasierte Indikatoren zur Bestimmung des Einflusses des Überflutungsregimes auf die Ufer- und Auenvegetation. Auenmagazin, 23, Art.-Nr.: 60–60.
Labenski, P.; Ewald, M.; Schmidtlein, S.; Heinsch, F. A.; Fassnacht, F. E. (2023). Quantifying surface fuels for fire modelling in temperate forests using airborne lidar and Sentinel-2: potential and limitations. Remote Sensing of Environment, 295, 113711. doi:10.1016/j.rse.2023.113711
Schäfer, J.; Weiser, H.; Winiwarter, L.; Höfle, B.; Schmidtlein, S.; Fassnacht, F. E. (2023). Generating synthetic laser scanning data of forests by combining forest inventory information, a tree point cloud database and an open-source laser scanning simulator. Forestry: An International Journal of Forest Research, 96 (5), 653–671. doi:10.1093/forestry/cpad006
Schwarz, S.; Werner, C.; Fassnacht, F. E.; Ruehr, N. K. (2023). Forest canopy mortality during the 2018-2020 summer drought years in Central Europe: The application of a deep learning approach on aerial images across Luxembourg. Forestry: An International Journal of Forest Research, 2023, Art.-Nr.: cpad049. doi:10.1093/forestry/cpad049
Shafeian, E.; Fassnacht, F. E.; Latifi, H. (2023). Detecting semi-arid forest decline using time series of Landsat data. European Journal of Remote Sensing, 56 (1), Art.-Nr. 2260549. doi:10.1080/22797254.2023.2260549
2022
Chakraborty, T.; Reif, A.; Matzarakis, A.; Helle, G.; Faßnacht, F.; Saha, S. (2022). Carbon and oxygen dual-isotopes indicate alternative physiological mechanisms opted by European beech trees to survive drought stress. Scandinavian journal of forest research, 37 (5-8), 295–313. doi:10.1080/02827581.2022.2155236
Fassnacht, F. E.; Müllerová, J.; Conti, L.; Malavasi, M.; Schmidtlein, S. (2022). About the link between biodiversity and spectral variation. Applied vegetation science, 25 (1), e12643. doi:10.1111/avsc.12643
Labenski, P.; Ewald, M.; Schmidtlein, S.; Fassnacht, F. E. (2022). Classifying surface fuel types based on forest stand photographs and satellite time series using deep learning. International journal of applied earth observation and geoinformation, 109, Article no: 102799. doi:10.1016/j.jag.2022.102799
Weiser, H.; Schäfer, J.; Winiwarter, L.; Krašovec, N.; Fassnacht, F. E.; Höfle, B. (2022). Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests. Earth System Science Data, 14 (7), 2989–3012. doi:10.5194/essd-14-2989-2022
2021
Braun, A. C.; Faßnacht, F.; Valencia, D.; Sepulveda, M. (2021). Consequences of land-use change and the wildfire disaster of 2017 for the central Chilean biodiversity hotspot. Regional Environmental Change, 21 (2), Art.-Nr.: 37. doi:10.1007/s10113-021-01756-4
Fassnacht, F. E.; Poblete-Olivares, J.; Rivero, L.; Lopatin, J.; Ceballos-Comisso, A.; Galleguillos, M. (2021). Using Sentinel-2 and canopy height models to derive a landscape-level biomass map covering multiple vegetation types. International journal of applied earth observation and geoinformation, 94, Art.-Nr.: 102236. doi:10.1016/j.jag.2020.102236
Fassnacht, F. E.; Schmidt-Riese, E.; Kattenborn, T.; Hernández, J. (2021). Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird’s eye (UAS) perspective. International journal of applied earth observation and geoinformation, 95, Article no: 102262. doi:10.1016/j.jag.2020.102262
Gränzig, T.; Fassnacht, F. E.; Kleinschmit, B.; Förster, M. (2021). Mapping the fractional coverage of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV orthoimages and a new spatial optimization approach. International journal of applied earth observation and geoinformation, 96, Art. Nr.: 102281. doi:10.1016/j.jag.2020.102281
Hosseini, Z.; Latifi, H.; Naghavi, H.; Bakhtiarvand Bakhtiari, S.; Fassnacht, F. E. (2021). Influence of plot and sample sizes on aboveground biomass estimations in plantation forests using very high resolution stereo satellite imagery. Forestry, 94 (2), 278–291. doi:10.1093/forestry/cpaa028
Li, L.; Fassnacht, F. E.; Bürgi, M. (2021). Using a landscape ecological perspective to analyze regime shifts in social–ecological systems: a case study on grassland degradation of the Tibetan Plateau. Landscape ecology, 36, 2277–2293. doi:10.1007/s10980-021-01191-0
Modzelewska, A.; Kamińska, A.; Fassnacht, F. E.; Stereńczak, K. (2021). Multitemporal hyperspectral tree species classification in the Białowieza Forest World Heritage site. Forestry, 94 (3), 464–476. doi:10.1093/forestry/cpaa048
Shafeian, E.; Fassnacht, F. E.; Latifi, H. (2021). Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and very high-resolution data. International Journal of Applied Earth Observation and Geoinformation, 105, Art.-Nr.: 102621. doi:10.1016/j.jag.2021.102621
Weiser, H.; Winiwarter, L.; Anders, K.; Fassnacht, F. E.; Höfle, B. (2021). Opaque voxel-based tree models for virtual laser scanning in forestry applications. Remote Sensing of Environment, 265, Art.-Nr.: 112641. doi:10.1016/j.rse.2021.112641
2020
Kattenborn, T.; Eichel, J.; Wiser, S.; Burrows, L.; Fassnacht, F. E.; Schmidtlein, S. (2020). Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery. Remote sensing in ecology and conservation, 6 (4), 472–486. doi:10.1002/rse2.146
Modzelewska, A.; Fassnacht, F. E.; Stereńczak, K. (2020). Tree species identification within an extensive forest area with diverse management regimes using airborne hyperspectral data. International journal of applied earth observation and geoinformation, 84, Art.-Nr. 101960. doi:10.1016/j.jag.2019.101960
Senn, J. A.; Fassnacht, F. E.; Eichel, J.; Seitz, S.; Schmidtlein, S. (2020). A new concept for estimating the influence of vegetation on throughfall kinetic energy using aerial laser scanning. Earth surface processes and landforms, 45 (7), 1487–1498. doi:10.1002/esp.4820
Singh, P. P.; Chakraborty, T.; Dermann, A.; Dermann, F.; Adhikari, D.; Gurung, P. B.; Barik, S. K.; Bauhus, J.; Fassnacht, F. E.; Dey, D. C.; Rösch, C.; Saha, S. (2020). Assessing Restoration Potential of Fragmented and Degraded Fagaceae Forests in Meghalaya, North-East India. Forests, 11 (9), Art.-Nr.: 1008. doi:10.3390/F11091008
2019
Fassnacht, F. E.; Schiller, C.; Kattenborn, T.; Zhao, X.; Qu, J. (2019). A Landsat-based vegetation trend product of the Tibetan Plateau for the time-period 1990-2018. Scientific data, 6 (1), Art. Nr.: 78. doi:10.1038/s41597-019-0075-9
Kattenborn, T.; Eichel, J.; Fassnacht, F. E. (2019). Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Scientific reports, 9 (1), Article no: 17656. doi:10.1038/s41598-019-53797-9
Kattenborn, T.; Fassnacht, F. E.; Schmidtlein, S. (2019). Differentiating plant functional types using reflectance: which traits make the difference?. Remote sensing in ecology and conservation, 5 (1), 5–19. doi:10.1002/rse2.86
Kattenborn, T.; Lopatin, J.; Förster, M.; Braun, A. C.; Fassnacht, F. E. (2019). UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote sensing of environment, 227, 61–73. doi:10.1016/j.rse.2019.03.025
Lopatin, J.; Dolos, K.; Kattenborn, T.; Fassnacht, F. E. (2019). How canopy shadow affects invasive plant species classification in high spatial resolution remote sensing. Remote sensing in ecology and conservation, 5 (4), 302–317. doi:10.1002/rse2.109
Stereńczak, K.; Mielcarek, M.; Modzelewska, A.; Kraszewski, B.; Fassnacht, F. E.; Hilszczański, J. (2019). Intra-annual Ips typographus outbreak monitoring using a multi-temporal GIS analysis based on hyperspectral and ALS data in the Białowieża Forests. Forest ecology and management, 442, 105–116. doi:10.1016/j.foreco.2019.03.064
2018
Araya-López, R. A.; Lopatin, J.; Fassnacht, F. E.; Hernández, H. J. (2018). Monitoring Andean high altitude wetlands in central Chile with seasonal optical data: A comparison between Worldview-2 and Sentinel-2 imagery. ISPRS journal of photogrammetry and remote sensing, 145, 213–224. doi:10.1016/j.isprsjprs.2018.04.001
Ewald, M.; Aerts, R.; Lenoir, J.; Fassnacht, F. E.; Nicolas, M.; Skowronek, S.; Piat, J.; Honnay, O.; Garzón-López, C. X.; Feilhauer, H.; Van De Kerchove, R.; Somers, B.; Hattab, T.; Rocchini, D.; Schmidtlein, S. (2018). LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy. Remote sensing of environment, 211, 13–25. doi:10.1016/j.rse.2018.03.038
Faßnacht, F. E.; Latifi, H.; Hartig, F. (2018). Using synthetic data to evaluate the benefits of large field plots for forest biomass estimation with LiDAR. Remote sensing of environment, 213, 115–128. doi:10.1016/j.rse.2018.05.007
Piiroinen, R.; Fassnacht, F. E.; Heiskanen, J.; Maeda, E.; Mack, B.; Pellikka, P. (2018). Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one class classification. Remote sensing of environment, 218, 119–131. doi:10.1016/j.rse.2018.09.018
Teltscher, K.; Fassnacht, F. E. (2018). Using multispectral landsat and sentinel-2 satellite data to investigate vegetation change at Mount St. Helens since the great volcanic eruption in 1980. Journal of mountain science, 15 (9), 1851–1867. doi:10.1007/s11629-018-4869-6
2017
Delgado-Aguilar, M. J.; Fassnacht, F. E.; Peralvo, M.; Gross, C. P.; Schmitt, C. B. (2017). Potential of TerraSAR-X and Sentinel 1 imagery to map deforested areas and derive degradation status in complex rain forests of Ecuador. The international forestry review, 19 (1), 102–118. doi:10.1505/146554817820888636
Fassnacht, F. E.; Mangold, D.; Schäfer, J.; Immitzer, M.; Kattenborn, T.; Koch, B.; Latifi, H. (2017). Estimating stand density, biomass and tree species from very high resolution stereo-imagery – towards an all-in-one sensor for forestry applications?. Forestry, 90 (5), 613–631. doi:10.1093/forestry/cpx014
Kattenborn, T.; Fassnacht, F. E.; Pierce, S.; Lopatin, J.; Grime, J. P.; Schmidtlein, S. (2017). Linking plant strategies and plant traits derived by radiative transfer modelling. Journal of vegetation science, 28 (4), 717–727. doi:10.1111/jvs.12525
Li, L.; Fassnacht, F. E.; Storch, I.; Bürgi, M. (2017). Land-use regime shift triggered the recent degradation of alpine pastures in Nyanpo Yutse of the eastern Qinghai-Tibetan Plateau. Landscape ecology, 32 (11), 2187–2203. doi:10.1007/s10980-017-0510-2
Lopatin, J.; Faßnacht, F. E.; Kattenborn, T.; Schmidtlein, S. (2017). Mapping plant species in mixed grassland communities using close range imaging spectroscopy. Remote sensing of environment, 201, 12–23. doi:10.1016/j.rse.2017.08.031
Schmidt, J.; Fassnacht, F. E.; Förster, M.; Schmidtlein, S. (2017). Synergetic use of Sentinel-1 and Sentinel-2 for assessments of heathland conservation status. Remote sensing in ecology and conservation, 4 (3), 225–239. doi:10.1002/rse2.68
Schmidt, J.; Fassnacht, F. E.; Lausch, A.; Schmidtlein, S. (2017). Assessing the functional signature of heathland landscapes via hyperspectral remote sensing. Ecological indicators, 73, 505–512. doi:10.1016/j.ecolind.2016.10.017
Schmidt, J.; Fassnacht, F. E.; Neff, C.; Lausch, A.; Kleinschmit, B.; Förster, M.; Schmidtlein, S. (2017). Adapting a Natura 2000 field guideline for a remote sensing-based assessment of heathland conservation status. International journal of applied earth observation and geoinformation, 60, 61–71. doi:10.1016/j.jag.2017.04.005
Schmidtlein, S.; Fassnacht, F. E. (2017). The spectral variability hypothesis does not hold across landscapes. Remote sensing of environment, 192, 114–125. doi:10.1016/j.rse.2017.01.036
Stavros, E. N.; Schimel, D.; Pavlick, R.; Serbin, S.; Swann, A.; Duncanson, L.; Fisher, J. B.; Fassnacht, F.; Ustin, S.; Dubayah, R.; Schweiger, A.; Wennberg, P. (2017). ISS observations offer insights into plant function. Nature ecology & evolution, 1 (7), Art.Nr.: 0194. doi:10.1038/s41559-017-0194
Stenzel, S.; Fassnacht, F. E.; Mack, B.; Schmidtlein, S. (2017). Identification of high nature value grassland with remote sensing and minimal field data. Ecological indicators, 74, 28–38. doi:10.1016/j.ecolind.2016.11.005
2016
Fassnacht, F. E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L. T.; Straub, C.; Ghosh, A. (2016). Review of studies on tree species classification from remotely sensed data. Remote sensing of environment, 186, 64–87. doi:10.1016/j.rse.2016.08.013
Lopatin, J.; Dolos, K.; Hernández, H. J.; Galleguillos, M.; Fassnacht, F. E. (2016). Comparing Generalized Linear Models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote sensing of environment, 173, 200–210. doi:10.1016/j.rse.2015.11.029
2015
Fassnacht, F. E.; Li, L.; Fritz, A. (2015). Mapping degraded grassland on the Eastern Tibetan Plateau with multi-temporal Landsat 8 data - where do the severely degraded areas occur?. International journal of applied earth observation and geoinformation, 42, 115–127. doi:10.1016/j.jag.2015.06.005
Fassnacht, F. E.; Stenzel, S.; Gitelson, A. A. (2015). Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices. Journal of Plant Physiology, 176, 210–217. doi:10.1016/j.jplph.2014.11.003
Kattenborn, T.; Maack, J.; Faßnacht, F.; Enßle, F.; Ermert, J.; Koch, B. (2015). Mapping forest biomass from space - Fusion of hyperspectralEO1-hyperion data and Tandem-X and WorldView-2 canopy heightmodels. International Journal of Applied Earth Observation and Geoinformation, 35 (PB), 359–367. doi:10.1016/j.jag.2014.10.008
Latifi, H.; Fassnacht, F. E.; Hartig, F.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. (2015). Stratified aboveground forest biomass estimation by remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 38 (PB), 229–241. doi:10.1016/j.jag.2015.01.016
Latifi, H.; Fassnacht, F. E.; Müller, J.; Tharani, A.; Dech, S.; Heurich, M. (2015). Forest inventories by LiDAR data: A comparison of single tree segmentation and metric-based methods for inventories of a heterogeneous temperate forest. International journal of applied earth observation and geoinformation, 42, 162–174. doi:10.1016/j.jag.2015.06.008
Lopatin, J.; Galleguillos, M.; Fassnacht, F. E.; Ceballos, A.; Hernández, J. (2015). Using a multistructural object-based LiDAR approach to estimate vascular plant richness in mediterranean forests with complex structure. IEEE geoscience and remote sensing letters, 12 (5), 1008–1012. doi:10.1109/LGRS.2014.2372875
Maack, J.; Kattenborn, T.; Fassnacht, F. E.; Enssle, F.; Hernandez, J.; Corvalan, P.; Koch, B. (2015). Modeling forest biomass using very-high-resolution data - combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images. European journal of remote sensing, 48, 245–261. doi:10.5721/EuJRS20154814
2014
Delgado, D. V.; Hernández, J.; Fassnacht, F. E.; Serey, L. C.; Lopatin, J.; Corvalán, P. (2014). Estimation of aerial biomass using discrete-wave LiDAR data in combination with different vegetation indices in plantations of Pinus radiata (D. DON), Región del Maule, Chile. Sustainability Agri Food Environmental Research, 2 (3), 30–49. doi:10.7770/safer-V2N3-art823
Fassnacht, F. E.; Latifi, H.; Ghosh, A.; Joshi, P. K.; Koch, B. (2014). Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote sensing of environment, 140, 533–548. doi:10.1016/j.rse.2013.09.014
Fassnacht, F. E.; Hartig, F.; Latifi, H.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. (2014). Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sensing of Environment, 154 (1), 102–114. doi:10.1016/j.rse.2014.07.028
Fassnacht, F. E.; Neumann, C.; Forster, M.; Buddenbaum, H.; Ghosh, A.; Clasen, A.; Joshi, P. K.; Koch, B. (2014). Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central european test sites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (6), 2547–2561. doi:10.1109/JSTARS.2014.2329390
Ghosh, A.; Fassnacht, F. E.; Joshi, P. K.; Koch, B. (2014). A framework for mapping tree species combining Hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales. International journal of applied earth observation and geoinformation, 26, 49–63. doi:10.1016/j.jag.2013.05.017
Latifi, H.; Fassnacht, F. E.; Schumann, B.; Dech, S. (2014). Object-based extraction of bark beetle (Ips typographus L.) infestations using multi-date LANDSAT and SPOT satellite imagery. Progress in physical geography, 38 (6), 755–785. doi:10.1177/0309133314550670
2012
Fassnacht, F. E.; Koch, B. (2012). Review on forestry oriented multi-angular remote sensing techniques. The international forestry review, 14 (3), 285–298.
Fassnacht, F. E.; Latifi, H.; Koch, B. (2012). An angular vegetation index for imaging spectroscopy data - Preliminary results on forest damage detection in the Bavarian National Park, Germany. International journal of applied earth observation and geoinformation, 19, 308–321. doi:10.1016/j.jag.2012.05.018
Latifi, H.; Fassnacht, F. E.; Koch, B. (2012). Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote sensing of environment, 121, 10–25. doi:10.1016/j.rse.2012.01.015